4,037 research outputs found

    The Universal Property of the Entropy Sum of Black Holes in All Dimensions

    Get PDF
    It is proposed by Cvetic et al [Phys. Rev. Lett. 106 (2011) 121301] that the product of all horizon areas for general rotating multi-change black holes has universal expressions independent of the mass. When we consider the product of all horizon entropies, however, the mass will be present in some cases, while another new universal property [JHEP 1401 (2014) 031] is preserved, which is more general and says that the sum of all horizon entropies depends only on the coupling constants of the theory and the topology of the black hole. The property has been studied in limited dimensions and the generalization in arbitrary dimensions is not straight-forward. In this Letter, we prove a useful formula, which makes it possible to investigate this conjectured universality in arbitrary dimensions for the maximally symmetric black holes in general Lovelock gravity and f(R)f(R) gravity. We also propose an approach to compute the entropy sum of general Kerr-(anti-)de-Sitter black holes in arbitrary dimensions. In all these cases, we prove that the entropy sum only depends on the coupling constants and the topology of the black hole.Comment: 16 pages,no figures;v2: 17 pages, references added, minor corrections/modifications; v3: 16 pages, added references, correct some expressons, added equation (16) to make the context more clear, to appear in PL

    Nonlocal criteria for compactness in the space of LpL^{p} vector fields

    Full text link
    This work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of LpL^p vector fields defined on a domain that is either a bounded domain in Rd\mathbb{R}^{d} or Rd\mathbb{R}^{d} itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields

    Effect of sea quarks on the single-spin asymmetries ALW±A^{W^{\pm}}_{L} in polarized pp collisions at RHIC

    Full text link
    We calculate the single-spin asymmetries ALW±A^{W^{\pm}}_{L} of W±W^{\pm} bosons produced in polarized pp collisions with the valence part of the up and down quark helicity distributions modeled by the light-cone quark-spectator-diquark model while the sea part helicity distributions of the up and down quarks treated as parametrization. Comparing our results with those from experimental data at RHIC, we find that the helicity distributions of sea quarks play an important role in the determination of the shapes of ALW±A^{W^{\pm}}_{L}. It is shown that ALW−A^{W^{-}}_{L} is sensitive to Δuˉ\Delta \bar u, while ALW+A^{W^{+}}_{L} to Δdˉ\Delta \bar d intuitively. The experimental data of the polarized structure functions and the sum of helicities are also important to constrain the sizes of quark helicity distributions both for the sea part and the valence part of the nucleon.Comment: 19 latex pages, 5 figures, final version for publicatio
    • …
    corecore